
Copyright 2018 Enoch Hwang Page 1 of 11

My First Android App

Download	and	Install	Android	Studio	

1. You can use a Windows, Mac, or Linux machine.
2. Browse to https://developer.android.com/studio
3. Click Download Android Studio to download the most current version of the program. The

instructions in this document are for version 4.1.1.
4. Run the setup program that you have downloaded.
5. Accept all the defaults.
6. The download and installation will take about 5 minutes.

Running	Android	Studio	for	the	First	Time	

7. Run Android Studio.
8. Accept all the defaults.
9. The initial setup will take about 15 minutes.

Running	Android	Studio	

10. In the welcome startup window, select Create New Project.

Copyright 2018 Enoch Hwang Page 2 of 11

11. In the Select a Project Template window, select the Empty Activity template.

12. Click Next.

Copyright 2018 Enoch Hwang Page 3 of 11

13. In the Configure Your Project window, type in MyFirstAndroidApp for the project name,
and select Java for the language.

14. If you are going to put your app on the Google App store then you’ll have to change the
domain for the package name to your own domain. For now just use the default.

15. Click Finish.

16. Watch the status bar at the bottom of the IDE window and wait until all initial processing
activities have stopped. It'll take about 6 minutes.

17. While waiting, look at the various tabs and icons in the IDE window. Don't click on anything
yet. Find the Run, AVD Manger and SDK Manager icons. The code is in the center editor
window and is written in Java. You can also close the What's New window by clicking on
the bar icon at the top right corner.

Copyright 2018 Enoch Hwang Page 4 of 11

18. The main Android Studio IDE window is shown after all the initial processing activities have
completed. The Project pane on the left shows all the files in this project. Currently, the
MainActivity.java file is selected and the content of it is shown in the editor pane on the
right side.

 	

Copyright 2018 Enoch Hwang Page 5 of 11

Running	the	App	on	an	Emulator	

19. From the target device drop-down menu, select the Android Virtual Device (AVD) that you
want to run your app on. In the figure below, the Pixel_3a_API_30_x86 emulator is selected.

20. If there are no devices listed in the drop-down menu then you will need to use the AVD
Manager to create an AVD that the emulator can use to install and run your app.

21. Click on the green triangle Run icon (also under the Run menu) to run the app on the
emulator. This will first compile the app, then upload it to the emulator (or an actual device if
you select that option) and finally run the app.

22. A new emulator window should open with the app running
showing the text “Hello World!”

23. Explore around in the emulator as you would on an actual
device.

 	

Copyright 2018 Enoch Hwang Page 6 of 11

Exploring	the	Project	Folders	and	Files	

24. Make sure that the Project tab and the Android view are selected.

 All the Java source code files for the project reside in the app | java |
com.example.myfirstandroidapp folder.	

 The MainActivity.java file in this folder is the entry point for your app. When you build
and run your app, the system launches an instance of this Activity and loads its layout for
the screen.	

 All the project resources are located in the app | res folder.	

Copyright 2018 Enoch Hwang Page 7 of 11

 The activity_main.xml file in the app | res | layout folder defines the screen layout for
the activity’s user interface (UI). Current, it contains a TextView element with the text
“Hello World!”	

 The AndroidManifest.xml file in the app | manifests folder describes the fundamental
characteristics of the app and defines each of its components.	

 There are two build.gradle files in the Gradle Scripts folder: one for the Project and
one for the Module.	

 The strings.xml file contains all the string constant declarations.	
 The drawable folder contains all the icon and picture resources for the project.	

Adding	a	Button	

25. Edit the activity_main.xml file.
26. You can switch between an XML code view and a design view of the layout by clicking on

either the Code or Design button.
27. Click on the Code button to add a button using xml code. This is what you should see.

<?xml version="1.0" encoding="utf‐8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res‐auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <TextView
 android:id="@+id/textView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

</androidx.constraintlayout.widget.ConstraintLayout>

28. On a new line after the TextView block, do the following.
 Type <B
 From the pop-up menu select Button
 The editor will automatically insert the word Button and the two layout lines.
 The cursor is now placed inside the double quote for the layout_width with the pop-

up menu showing the options that you can have.
 Use the up/down arrow key to select the one that you want and press Enter to

accept it. In our case, we want to select wrap_content.

Copyright 2018 Enoch Hwang Page 8 of 11

 Do the same thing and select wrap_content for the layout_height.
 On the next line, type t and select text. Then type the word Button inside the quotes.
 Press tab to move to the next field and accept everything in between, in this case it’s

the ending quote.
 To get the layout_constraintBottom_to_BottomOf attribute, instead of typing from

the beginning, simply type cBtB and select it from the pop-up menu.
 Continue in a similar fashion to enter the rest of the code.
 When things don’t pop up then just delete the line and re-type it in.
 Note that the ordering of the lines does not matter.
 Add an id attribute by typing id, select id, select @+id/, type button for the id name

 Type / to close the tag with />

29. This is the complete activity_main.xml file after adding the button object.

<?xml version="1.0" encoding="utf‐8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res‐auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <TextView
 android:id="@+id/textView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/textView" />

</androidx.constraintlayout.widget.ConstraintLayout>

30. Run the app and you’ll see a TextView and a Button on the screen.

Handling	Click	events	for	the	Button	

31. Edit the activity_main.xml file.

Copyright 2018 Enoch Hwang Page 9 of 11

32. Add the onClick attribute for the Button object. Inside the double quotes type the name of
the method to call when the button is clicked. In the example below the method name is
methodToCall.

<Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/textView"
 android:onClick="methodToCall"/>

33. Notice that the name methodToCall is in red. This means that there’s an error. In this case it
is because you have not yet declared a method with that name in your java code. To resolve
the error you need to add this method in the MainActivity.java file. However, instead of
manually typing the method in, you just need to put your cursor on the red error. A red bulb
will appear on the line. Click on the red bulb and a pop-up menu appears. Select the correct
action that you want to perform to resolve the error. In this case, select Create
methodToCall(view) in MainActivity. You will be doing this very often to resolve errors.
This not only speeds up code entry but also insert boiler plate code that you otherwise would
not have known that you need.

34. Edit the MainActivity.java file. You will see the methodToCall method added at the end.
You can add whatever code you want to execute when the button is clicked inside the
method.

Adding	a	Toast	and	a	Log	

A Toast is a pop up message that is displayed on the screen during run time. A Log displays a
message in the Logcat window in Android Studio.

35. Add these two lines in the methodToCall method.

@Override
public void methodToCall(View view) {
 Toast.makeText(view.getContext(), "Button clicked",
Toast.LENGTH_SHORT).show();
 Log.d("myTag", "Button clicked");
}

or

 Toast.makeText(getApplicationContext(), "Button clicked",
Toast.LENGTH_SHORT).show();

Copyright 2018 Enoch Hwang Page 10 of 11

 The Toast call arguments are a view context, the message to display, and for how long to show
the message. To get the context you can use either view.getContext() or
getApplicationContext().

 The Log call arguments are the tag name, and the message to print out. The d in Log.d means to
show the debug level messages.

36. To see the log messages, you need to create a filter otherwise too many messages are shown and
it’s difficult to see your messages. Open the Logcat window at the bottom of the IDE by clicking on
the Logcat tab.

37. Select Edit Filter Configuration from the drop-down menu.

38. Create the following Logcat filter by typing My filter for the filter name, myTag for the Log Tag, and
select Debug for the Log Level.

39. Click OK

40. In the Logcat window select Debug log level and the newly created My filter filter. Now only the log
messages with the tag myTag will be printed out.

Copyright 2018 Enoch Hwang Page 11 of 11

41. Run the app. When you click on the button, there will be a pop-up message on the screen and
also a log message in the Logcat window.

